27 research outputs found

    Power-over-fiber in a 10 km long multicore fiber link within a 5G fronthaul scenario

    Get PDF
    We evaluate the impact of Power-over-Fiber (PoF) technology on the fronthaul of a 5G-NR network with an Analog-Radio-over-Fiber at 25.5 GHz on a 10 km long multicore fiber. The study in this Letter analyzes the bit error rate (BER) performance for different levels of energy transmitted by the PoF system. 133 mW of maximum optical power at reception is demonstrated showing negligible BER impact or data transmission BER improvement in a dedicated and shared scenario.Comunidad de Madrid (Y2018/EMT-4892); Ministerio de Ciencia, Innovación y Universidades (RTI2018-094669-B-C32); Horizon 2020 Framework Programme (762055)

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    SDN-enabled terahertz x-haul network

    No full text
    | openaire: EC/H2020/871668/EU//TERAWAYWith the explosive data growth of user traffic in wireless communications, Terahertz (THz) frequency band is envisioned as a promising candidate to support ultra-broadband communications for beyond fifth generation (5G) networks. Software-based networking is being adopted in mobile communications to improve efficiency and reduce operational costs. This paper presents the design of a comprehensive SDN management architecture for joint optimization of radio and network resources. The proposed architecture obtains the most added value out of the use of THz technology integrated with software managed networking for mobile network beyond 5G. In this paper, leveraging optical concepts and photonic integration techniques for an ultra-broadband and ultra-wideband wireless system is presented.Peer reviewe

    SDN-Enabled THz wireless X-Haul for B5G

    No full text
    Funding Information: The authors would like to thank the support and contributions from all colleagues from TERAWAY project. TERAWAY is EU funded project part of H2020 with grant No 871668 and it is an initiative of the Photonics Public Private Partnership. Publisher Copyright: © 2021 IEEE. | openaire: EC/H2020/871668/EU//TERAWAYWith the explosive data growth of user traffic in wireless communications, Terahertz (THz) frequency band is envisioned as a promising candidate to support ultra-broadband for beyond fifth generation (5G) networks. Software based networking is being adopted in mobile communications to improve efficiency and reduce operational costs. This paper presents the design of a comprehensive SDN management architecture for joint optimization of radio and network resources. The proposed architecture obtains the most added value out of use of THz technology integrated with software managed networking for mobile network beyond 5G. In this paper, leveraging optical concepts and photonic integration techniques for an ultrawideband and broadband wireless system is presented.Peer reviewe

    Mapping embedded applications on MPSoCs:The MNEMEE approach

    No full text
    \u3cp\u3eAs embedded systems are becoming the center of our digital life, system design becomes progressively harder. The integration of multiple features on devices with limited resources requires careful and exhaustive exploration of the design search space in order to efficiently map modern applications to an embedded multi-processor platform. The MNEMEE project addresses this challenge by offering a unique integrated tool flow that performs source-to-source transformations to automatically optimize the original source code and map it on the target platform. The optimizations aim at reducing the number of memory accesses and the required memory storage of both dynamically and statically allocated data. Furthermore, the MNEMEE tool flow parallelizes the application's source code and performs optimal assignment of all data on the memory hierarchy of the target platform. Designers can use the whole flow or a part of it and integrate it into their own design flow. This work gives an overview of the MNEMEE tool flow. It also presents two industrial case studies that demonstrate how the techniques and tools developed in the MNEMEE project can be integrated into industrial design flows.\u3c/p\u3

    Mapping embedded applications on MPSoCs: The MNEMEE approach

    No full text
    As embedded systems are becoming the center of our digital life, system design becomes progressively harder. The integration of multiple features on devices with limited resources requires careful and exhaustive exploration of the design search space in order to efficiently map modern applications to an embedded multi-processor platform. The MNEMEE project addresses this challenge by offering a unique integrated tool flow that performs source-to-source transformations to automatically optimize the original source code and map it on the target platform. The optimizations aim at reducing the number of memory accesses and the required memory storage of both dynamically and statically allocated data. Furthermore, the MNEMEE tool flow parallelizes the application's source code and performs optimal assignment of all data on the memory hierarchy of the target platform. Designers can use the whole flow or a part of it and integrate it into their own design flow. This work gives an overview of the MNEMEE tool flow. It also presents two industrial case studies that demonstrate how the techniques and tools developed in the MNEMEE project can be integrated into industrial design flows
    corecore